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Abstract
We investigate the quantum effects of the nonlocal gauge invariant operator

1
D2 Fμν ∗ 1

D2 F
μν in the noncommutative U(1) action and its consequences to

the infrared sector of the theory. Nonlocal operators of such kind were proposed
to solve the infrared problem of the noncommutative gauge theories evading
the questions on the explicit breaking of the Lorentz invariance. More recently,
a first step in the localization of this operator was accomplished by means of
the introduction of an extra tensorial matter field, and the first loop analysis
was carried out (Blaschke et al (2009 Eur. Phys. J. C 62 433–43)). We will
complete this localization avoiding the introduction of new degrees of freedom
beyond those of the original action by using only BRST doublets. This will
allow us to conduct a complete BRST algebraic study of the renormalizability of
the theory, following Zwanziger’s method of localization of nonlocal operators
in QFT.

PACS numbers: 11.10.Nx, 11.15.−q

1. Introduction

The year 1999 witnessed two major developments in the noncommutative quantum field
theory program. In the first one, Seiberg and Witten [1], inspired by the previously known
result that the low energy limit of open strings could lead both to a gauge theory defined
on a noncommutative space as well as to a usual commutative gauge theory, depending only
on gauge choices, announced the existence of what became called the Seiberg–Witten map
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between noncommutative and commutative gauge theories. This achievement was then fully
tested and confirmed by several authors in both the general structures of gauge transformations
as in specific examples of gauge theories (we make a short list of references which is far from
being complete [2–11]). It also opened a window to an alternative approach to the quantum
properties of the noncommutative theories.

The second development just revealed the kind of difficulties one has to face when
tackling the renormalization of field theories in the noncommutative space. An intrinsic
mixing between high and low energy scales was associated with the noncommutativity
of spacetime, generating divergences which in the general case make these theories
nonrenormalizable as they stand [12]; the case of noncommutative gauge theories being
no exception [13]. Recently, it was finally understood that this infrared/ultraviolet
(IR/UV) mix is still present even after a Seiberg–Witten map [14], showing that the
commutative theories generated by their noncommutative counterparts suffer from the same
nonrenormalizability.

It took some time until the first proposal appeared in order to cure a noncommutative
scalar theory from this IR divergence [15]. The basic idea was to alter the free propagator
of the theory through the introduction of an harmonic potential, then changing its low energy
behavior. This in fact made the theory convergent in the infrared region, but at the cost
of explicitly breaking translation invariance. In [16] this problem was circumvented by the
introduction of a nonlocal term, again assuring that the IR/UV mixing would be cured for
a scalar theory. Soon, this proposal was generalized to the case of a noncommutative gauge
theory [17]. The main idea was still the same, to change the low energy pattern of the theory,
and this was obtained through the introduction of a nonlocal term one more time. The practical
effect of this term is a modified free propagator of the gauge field, which acquires a 1/k4 pole,
consistently defined in Euclidean spacetime. This is how the infrared regime of the theory
gets modified. Again, we still have a problem with this approach in the way it was presented
up to this point, as the nonlocality is not adequate to match the requisites of the quantum
action principle (QAP) [18] here taken as valid in the noncommutative space (even though
the quantun action principle has no proof of validity in the noncommutative environment,
its use became standard after the results of [19–22]; we will have more to say about this in
section 4.1). The way out would be to find an equivalent local action meeting the same
properties of the previous one. So the quantum study of such theory was awaited until more
recently when a way to localize this nonlocal action was found. Then a one-loop analysis
was finally carried out [23]. This was an important achievement, but once more there is an
undesirable feature: the introduction of an extra field in the theory, creating extra degrees of
freedom not present in the original noncommutative gauge theory. A natural question would
be to ask if this is an unavoidable price to be paid in order to have a possibly renormalizable
noncommutative theory with gauge interactions.

Our intention here will be focused on presenting an alternative scenario of localization,
paving the way to a renormalizable noncommutative gauge field theory, but avoiding to
introduce any extra degree of freedom.

In section 2, we present the nonlocal action, its localization via doublet fields and the
resulting BRST symmetry. In section 3, the equations compatible with the quantum action
principle are derived. Section 4 is dedicated to the analysis of the quantum stability of the
theory. In this section we pay special attention to possible UV quantum corrections that can
spoil the IR renormalizability of the two-point function. The definitive form of the propagator
is finally obtained, showing a modification from the classical starting one. In section 5, we
show our conclusion.
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2. BRST in Euclidean space

The nonlocal action that we will study is

SNL =
∫

d4x

{
1

4
Fμν ∗ Fμν + γ 4 1

4

1

D2
Fμν ∗ 1

D2
Fμν

}
. (1)

We assume a Euclidian signature for the spacetime and an Abelian gauge group, with

Fμν = ∂μAν − ∂νAμ − ig[Aμ
∗, Aν], Dμ = ∂μ + ig[∗, Aμ]. (2)

The commutator of two coordinates is [xμ, xν] = i�μν , where

� =

⎛⎜⎜⎝
0 θ 0 0

−θ 0 0 0
0 0 0 θ

0 0 −θ 0

⎞⎟⎟⎠
and θ is the noncommutativity parameter [16].

This action gives to the gauge field propagator a more adequate behavior in the infrared
for the noncommutative space:

〈A(k)μAν(−k)〉 =
(

δμν − kμkν

k2

)
k2

k4 + γ 4
. (3)

As pointed out in [17, 23], the infrared behavior of this kind of propagator decouples the
ultraviolet and infrared regimes, and, then, the action (1) is a good candidate to generate a
coherent quantum gauge theory in noncommutative space, without the IR/UV mix.

The action SNL can be localized introducing a set of auxiliary tensorial fields. We use
two pairs of complex conjugated fields Bμν, Bμν;χμν, χμν . We will see that only with such
a structure, one can hope to get rid of the unwanted extra degrees of freedom. Anyway, the
action

SLO = S0 + Sbreak,

S0 =
∫

d4x

{
1

4
Fμν ∗ Fμν + χμν ∗ D2Bμν + Bμν ∗ D2χμν + γ 2χμν ∗ χμν

}
,

Sbreak =
∫

d4x
{
−i

γ

2
Bμν ∗ Fμν + i

γ

2
Bμν ∗ Fμν

}
,

(4)

although representing the nonlocal operator of (1) in a localized form, still presents the
problem that new degrees of freedom are being introduced by the auxiliary fields. This makes
the physics content of the theory described by (4) different from that of a noncommutative
U(1) theory.

This problem can be solved by associating a ghost for each tensorial field introduced, in
a way that a BRST structure of quartets will appear. This possibility of eliminating the extra
degrees is the main reason for our choice of localization, as other attempts fail at this point.
The action which attains this aim is

SLO+G = S0+G + Sbreak

S0+G =
∫

d4x

{
1

4
Fμν ∗ Fμν + χμν ∗ D2Bμν + Bμν ∗ D2χμν

+ γ 2χμν ∗ χμν − ψμν ∗ D2ξμν − ξμν ∗ D2ψμν − γ 2ψμν ∗ ψμν

}
. (5)
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The action S0+G is left invariant by the set of BRST transformations:

sAμ = −Dμc, sc = − ig

2
{c ∗, c},

sc = ib, sb = 0,

sFμν = −ig[c ∗, Fμν],

sξμν = Bμν − ig{c ∗, ξμν}, sBμν = −ig[c ∗, Bμν],

sψμν = χμν − ig{c ∗, ψμν}, sχμν = −ig[c ∗, χμν],

sBμν = ξμν − ig[c ∗, Bμν], sξμν = −ig{c ∗, ξμν},
sχμν = ψμν − ig[c ∗, χμν], sψμν = −ig{c ∗, ψμν},

(6)

where one can see the formation of a double quartet structure. This is an important point to
highlight here: the structure of two quartets is essential for the localization process. A possible
localization with only one quartet implies the use of the operator D2D2 or other equivalent
operator with four derivatives, and it is clear that this option leads to many nonrenormalizable
vertices for the localizing fields. These vertices carry large momentum as expected by a theory
that uses a field with canonical dimension 1 and ultraviolet dimension 0 [24]. In a commutative
theory, this fact certainly destroys the renormalizability, but a deeper analysis is required in
the case of noncommutative theories due to the structure of the UV/IR mix which is not very
well known and the possibility of the softening of divergences [25]. For such reasons, we
decided to use two quartets.

The action S0+G can then be written as

S0+G =
∫

d4x

{
1

4
Fμν ∗ Fμν

}
+ s�−1,

�−1 =
∫

d4x{ψμν ∗ D2Bμν + ξμν ∗ D2χμν + γ 2ψμνχ
μν}.

(7)

Once more we note that the physical degrees of freedom of the noncommutative U(1) theory
are being preserved. In our localized action (5), there is still a piece to be analyzed. The Sbreak

sector of the action is not left invariant by the BRST transformations (6). This is the element
that will bring a new physics to the pure U(1) case. It is BRST transformed into

sSbreak =
∫

d4x
{
−i

γ

2
ξμν ∗ Fμν

}
. (8)

From this point on, we will assume that the Moyal product is rigid under quantum corrections.
In the noncommutative space, the Moyal structure is intimately related to the gauge symmetry,
and one cannot modify the first without damaging the latter. This can also be inferred from
the fact that the only nontrivial cocycles of the BRST cohomology of gauge theories involve
exclusively the terms constructed with the field strength and covariant derivatives at the level
of the counterterms in the study of the quantum stability of the gauge action [18]. Naturally, in
the noncommutative space, there is room for higher dimensional terms built explicitly with θ ,
field strengths and covariant derivatives, invariant and nontrivial in the BRST sense, which are
not present at the original action. This is also seen by the method of consistent deformations
of [26] applied to the present case of noncommutative deformations of Maxwell theory [6].
It is the Lorentz structure of the vertices of the theory together with gauge invariance which
prohibits such counterterms. In [27], explicit calculations in noncommutative Chern–Simons
theory showed these properties. Then, although the presence of Fμν in (8) implies an infinite
series of terms, the rigidity of the Moyal product determines that Fμν is renormalized as a
whole. This allows us to understand the breaking in (8) in a way analogous to that of a soft
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breaking in a commutative theory (one can see that in zero θ order, this breaking is undoubtedly
a soft breaking). The treatment of softly broken theories was recently formalized in [28]. We
will need to study the renormalization of the theory together with the renormalization of the
breaking itself. This is done by introducing a set of sources in a BRST doublet in such a way
that the physical action is obtained when we set the sources to their physical values:

Sbreak = Ssource|phys

Ssource =
∫

d4x(Jμναβ ∗ {Bμν ∗, F αβ} + Jμναβ ∗ {Bμν ∗, F αβ} − Qμναβ ∗ {ξμν ∗, F αβ}), (9)

where by |phys we mean that in this limit the sources attain their physical values,

Jμναβ = i

8
γ (δμαδβν − δμβδαν), J μναβ | = − i

8
γ (δμαδβν − δμβδαν),

Qμναβ = 0, Qμναβ | = 0.

(10)

The BRST transformation of the sources,

sQμναβ = Jμναβ − ig{c ∗, Qμναβ}, sJμναβ = −ig[c ∗, Jμναβ], (11)

sQμναβ = Jμναβ − ig{c ∗, Qμναβ}, sJ μναβ = −ig[c ∗, J μναβ], (12)

shows the doublet structure that we have already mentioned. The action (9) is now easily seen
as an exact BRST variation, and the process altogether is a kind of an immersion of the original
theory inside this more general one. Following this reasoning, we can now also rewrite the
mass term γ 2χμνχμν − γ 2ψμνψμν in such a way that the mass parameter γ 2 only appears in
the theory after taking the physical values for the sources J, J ,Q,Q. This approach makes it
easier to note that before this process, only the original degrees of freedom coming from the
gauge field Aμ are present in the action.

The last steps needed for the BRST quantization are the definition of a gauge fixing, which
we take as the noncommutative Landau gauge fixing,

Sgf =
∫

d4x{ib ∗ ∂μAμ + c ∗ ∂μDμc}. (13)

And finally, a set of Slavnov sources �,L, u, u, v, v, P , P,R,R,M,M,N,N are
introduced in the action coupled to the nonlinear BRST transformations of the fields
A, c, ξ, ξ , B,B,ψ,ψ, χ, χ and sources Q,Q, J, J respectively.

The complete invariant action can then be written as

� =
∫

d4x

{
1

4
Fμν ∗ Fμν + ib ∗ ∂μAμ + c ∗ ∂μDμc + χμν ∗ D2Bμν + Bμν ∗ D2χμν

+ Jμναβ ∗ {Bμν ∗, F αβ} + Jμναβ ∗ {Bμν ∗, F αβ} − ψμν ∗ D2ξμν − ξμν ∗ D2ψμν

+
2

3
{J αβσλ

∗, J αβσλ}{χμν
∗, χμν} − 2

3
{J αβσλ

∗, J αβσλ}[ψμν
∗, ψμν]

−Qμναβ ∗ {ξμν ∗, F αβ} − �μ ∗ Dμc − i

2
L ∗ g{c ∗, c}

− iuμν ∗ g{c ∗, ξμν} + uμν ∗ (Bμν − ig{c ∗, ξμν})
+ vμν ∗ (ξμν − ig[c ∗, Bμν]) − ivμν ∗ g[c ∗, Bμν]

− iP
μν ∗ g{c ∗, ψμν} + P μν ∗ (χμν − ig{c ∗, ψμν})

+ R
μν ∗ (ψμν − ig[c ∗, χμν]) − iRμν ∗ g[c ∗, χμν]

5
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+ M
μναβ ∗ (Jμναβ − ig{c ∗, Qμναβ}) + Mμναβ ∗ (J μναβ − ig{c ∗, Qμναβ})

− iN
μναβ ∗ g[c ∗, Jμναβ] − iNμναβ ∗ g[c ∗, J μναβ]

}
, (14)

and it is ready for the BRST analysis.

3. Equations compatible with the quantum action principle

In this section, we will present several symmetries compatible with the QAP, which will be
useful in the BRST renormalization procedure. First we have the traditional Ward identities
present in usual gauge theories.

• Slavnov Taylor

S(�) =
∫

d4x

{
δ�

δAμ

δ�

δ�μ
+

δ�

δc

δ�

δL
+ ib

δ�

δc
+

δ�

δuμν

δ�

δξμν

+
δ�

δuμν

δ�

δξμν

+
δ�

δvμν

δ�

δBμν

+
δ�

δvμν

δ�

δBμν

+
δ�

δP
μν

δ�

δψμν

+
δ�

δP μν

δ�

δψμν

+
δ�

δR
μν

δ�

δχμν

+
δ�

δRμν

δ�

δχμν

+
δ�

δJ σλαβ

δ�

δNσλαβ

+
δ�

δJ
σλαβ

δ�

δNσλαβ

+
δ�

δQσλαβ

δ�

δMσλαβ

+
δ�

δQ
σλαβ

δ�

δMσλαβ

}
, (15)

• Lagrange multiplier and antighost equation
δ�

δb
= i∂μAμν, ∂μ

δ�

δ�μ

+
δ�

δc
= 0, (16)

• Ghost equation

G� =
∫

d4x
δ�

δc
= 0, (17)

• SL(2, R) equation

D(�) =
∫

d4x

{
c
δ�

δc
− i

δ�

δb

δ�

δL

}
= 0. (18)

It is important to emphasize here that, due to the Moyal structure, the possible breaking
terms are vanishing when integrated.

Now, due to the fact that all couplings are derivative in the noncommutative U(1) theory,
we also have integrated equations of motion:∫

d4x
δ�

δχμν =
∫

d4x

(
4

3
{J αβσλ

∗, J αβσλ}χμν + Pμν

)
,∫

d4x
δ�

δχμν
= 4

3

∫
d4x({J αβσλ

∗, J αβσλ}χμν),∫
d4x

δ�

δψ
μν = −4

3

∫
d4x({J αβσλ

∗, J αβσλ}ψμν),∫
d4x

δ�

δψμν
=

∫
d4x

(
4

3
{J αβσλ

∗, J αβσλ}ψμν + Rμν

)
,∫

d4x
δ�

δξ
μν = 0.

(19)

6
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These Ward identities will play a major role in the renormalizability study that we will conduct.
Let us observe here that these symmetries are only present in the U(1) case for the general
U(N) theory has nonderivative interactions. The absence of the Ward identities (19) is the main
reason why we believe that in the non-Abelian noncommutative case, we need an alternative
way of approaching the IR/UV problem. Now, let us go back to the U(1) case.

The final symmetries that we will list are the identities associated with the BRST doublet
structure U(1),

U(1)
σλμν(�) =

∫
d4x

(
ξσλ

δ�

δBμν

+ Bμν

δ�

δξσλ

+ χμν

δ�

δψσλ

+ ψσλ

δ�

δχμν

+ Jμναβ

δ�

δQσλαβ

+ Mσλαβ

δ�

δNμναβ

+ Jσλαβ

δ�

δQμναβ

+ Mμναβ

δ�

δNσλαβ

+ uσλ

δ�

δvμν

+ vμν

δ�

δuσλ

+ Pσλ

δ�

δRμν

+ Rμν

δ�

δP σλ

)
= 0, (20)

the linearly broken symmetries U(0) and Ũ (0),

U(0)
σλμν(�) = −�(0)

σλμν

U(0)
σλμν(�) =

∫
d4x

(
Bσλ

δ�

δBμν

− Bμν

δ�

δBσλ

+ χσλ

δ�

δχμν

− χμν

δ�

δχσλ

+ Jσλαβ

δ�

δJμναβ

− Nμναβ

δ�

δNσλαβ

− Jμναβ

δ�

J σλαβ

+ Nσλαβ

δ�

N μναβ

+ Rσλ

δ�

δRμν

− Rμν

δ�

δRσλ

+ vσλ

δ�

δvμν

− vμν

δ�

δvσλ

)

�(0)
σλμν =

∫
d4x(uσλ ∗ Bμν + Pσλ ∗ χμν + Rμν ∗ ψσλ + vμν ∗ ξσλ

+ Jμν
αβ ∗ Mσλαβ − Mμν

αβ ∗ Jσλαβ), (21)

Ũ
(0)
σλμν(�) = �(0)

μνσλ

Ũ
(0)
σλμν(�) =

∫
d4x

(
ψμν

δ�

δψσλ

− ψσλ

δ�

δψμν

+ ξμν

δ�

δξσλ

− ξσλ

δ�

δξμν

−Qσλαβ

δ�

δQμναβ

+ Mμναβ

δ�

δMσλαβ

+ Qμναβ

δ�

δQσλαβ

− Mσλαβ

δ�

δMμναβ

+ Pμν

δ�

δPσλ

− P σλ

δ�

δP μν

+ uμν

δ�

δuσλ

− uσλ

δ�

δuμν

)
, (22)

which together define the reality constraint on our action � and an associated reality charge
Q for all the fields and sources of the theory,

Q = Tr U(0) + Tr Ũ (0), (23)

and finally the last two symmetries

U(2)
σλμν(�) =

∫
d4x

{
ψσλ

δ�

δξ
μν + ψμν

δ�

δξ
σλ

− uσλ

δ�

δP
μν − uμν

δ�

δP
σλ

}
= 0, (24)

7
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Table 1. Quantum numbers of the fields.

Fields A b c c ψ ψ ξ ξ χ χ B B

UV dimension 1 2 0 2 1 1 1 1 1 1 1 1
Ghost number 0 0 1 −1 1 −1 1 −1 0 0 0 0
Q charge 0 0 0 0 1 −1 1 −1 1 −1 1 −1
Statistics co co an an an an an an co co co co

Table 2. Quantum numbers of the sources.

Sources � L J J Q Q u u v v P P R R

UV dimension 3 4 1 1 1 1 3 3 3 3 3 3 3 3
Ghost number −1 −2 0 0 −1 −1 0 −2 −1 −1 0 −2 −1 −1
Q charge 0 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
Statistics an co co co an an co co an an co co an an

Table 3. Quantum numbers of the auxiliary sources.

Sources M N M N

UV dimension 3 3 3 3
Ghost number 0 −1 0 −1
Q charge 1 1 −1 −1
Statistics co an co an

and

Ũ
(2)
σλμν(�) =

∫
d4x

{
ψσλ

δ�

δψ
μν + ψμν

δ�

δψ
σλ

+ ξσλ

δ�

δξ
μν + ξμν

δ�

δξ
σλ

−uσλ

δ�

δuμν − uμν

δ�

δuσλ
− Pσλ

δ�

δP
μν − Pμν

δ�

δP
σλ

}
= 0. (25)

Let us explain here that the tensorial nature of these symmetries will be responsible
for the fact that, in the cohomological analysis that we will undertake, the only possible
Lorentz indices contractions of the fields χ, χ,B,B,ψ,ψ, ξ, ξ and their sources obey the
same structure present in the action (14).

4. Stability of the quantum action

In order to study the stability of the quantum action, let us start by presenting the quantum
numbers of all fields and sources (see tables 1–3).

Once more, we call attention to the fact that in the stability analysis of the quantum action
it is necessary to take into account not only the canonical dimension but also the ultraviolet
dimension of all fields. The use of canonical dimensions generally leads to an incorrect
cohomological analysis.

8
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4.1. The invariant counterterm

In this section we will focus our attention on the possible UV counterterms that can change the
propagation behavior of the classical theory. The original structure that is obtained from (14)
when the sources attain their physical values is specially designed in order to incorporate the
coefficient of the IR singularity appearing in the two-point function of the noncommutative
U(1) theory [17] (other singular IR contributions are not addressed in this analysis [29]).
Then, new UV counterterms different from those already present in the starting action (14)
can be rather harmful to the delicate match at the IR level. The search for such contributions
is our main interest here.

Before proceeding, we would like to mention the use of the QAP in this noncommutative
context. Let us recapitulate the origin of the IR/UV mix. In general, Feynman graph
calculations in noncommutative theories can be divided in planar and non-planar contributions
[12]. The latter are those characterized by the presence of a remaining phase inside the
Feynman integrals. This phase is responsible for the damping of the UV divergences, which
become naturally regularized. As this phase depends on the external momenta (the phase
disappears for vanishing external momenta), the would-be UV divergence is turned into an
UV finite but IR singular contribution. The introduction of these nonlocal objects in the
starting action is a possible mechanism that is actually behind the reasoning leading to the
proposal of the action (1) to account for the two-point function IR singularity of the pure
noncommutative U(1) theory. On the other side, the non-planar graph is accompanied by
its planar counterpart, when the phase becomes dependent only on the external momenta,
and, in this way, factorizes off the integral. In general, the UV divergence of a planar graph
is accompanied by the non-planar singularity, generating the IR/UV mix. But the point is
that the U(1) planar graphs, where the UV divergences are generated, mimic the structure
of a commutative theory inside the integrals, with phase-dependent coefficients restoring the
noncommutative vertices [19]. This is what we meant by the Moyal rigidity hypothesis in the
introduction. Then, it is in this sector of the noncommutative theory that the QAP seems to
be valid, with a power-counting bounding the possible UV counterterms. The use of the QAP
can then be a guidance to search for possible IR singularities in the non-planar counterparts
associated with the planar UV divergent contributions. Finally, once all IR singularities of a
previous theory are stabilized, using mechanisms as that in (1), the question if the new nonlocal
action develops new IR singularities can again be answered using the QAP in the planar sector.
If the QAP indicates that this IR stabilized theory has no new UV divergent contributions, we
would be meeting a renormalization condition for this final theory. In order to characterize
any invariant counterterm which can be added freely to all orders in perturbation theory [18],
we perturb the classical action � by adding an arbitrary integrated local polynomial �count

of dimension up-bounded by four, vanishing ghost number and Q charge. We demand that
� = � + ε�count + O(ε2), where ε is a small expansion parameter, satisfies the same Ward
identities as �. This requirement provides the following constraints on the counterterm (for
convenience of the reader, we follow the same sequence of Ward identities of section (3)):

B��count = 0, (26)

δ

δb
�count = 0, (27)

∂μ

δ�count

δ�μ

+
δ�count

δc
= 0, (28)

D��count = 0, (29)
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G�count = 0, (30)∫
d4x

δ�count

δχμν = 0, (31)∫
d4x

δ�count

δχμν
= 0, (32)∫

d4x
δ�count

δψ
μν = 0, (33)∫

d4x
δ�count

δψμν
= 0, (34)∫

d4x
δ�count

δξ
μν = 0, (35)

U(1)
σλμν(�

count) = 0, (36)

U(0)
σλμν(�

count) = 0, (37)

Ũ
(0)
σλμν(�

count) = 0, (38)

U(2)
σλμν(�

count) = 0, (39)

Ũ
(2)
σλμν(�

count) = 0 , (40)

where in (26), B� stands for the nilpotent linearized Slavnov–Taylor operator,

B� =
∫

d4x

(
δ�

δAμ

δ

δ�μ
+

δ�

δ�μ

δ

δAμ

+
δ�

δc

δ

δL
+

δ�

δL

δ

δc
+ ib

δ

δc

+
δ�

δuμν

δ

δξμν

+
δ�

δξμν

δ

δuμν +
δ�

δuμν

δ

δξμν

+
δ�

δξμν

δ

δuμν

+
δ�

δvμν

δ

δBμν

+
δ�

δBμν

δ

δvμν +
δ�

δvμν

δ

δBμν

+
δ�

δBμν

δ

δvμν

+
δ�

δP
μν

δ

δψμν

+
δ�

δψμν

δ

δP
μν +

δ�

δP μν

δ

δψμν

+
δ�

δψμν

δ

δP μν

+
δ�

δR
μν

δ

δχμν

+
δ�

δχμν

δ

δR
μν +

δ�

δRμν

δ

δχμν

+
δ�

δχμν

δ

δRμν

+
δ�

δJσλαβ

δ

δN
σλαβ

+
δ�

δNσλαβ

δ

δJ σλαβ

+
δ�

δJ σλαβ

δ

δNσλαβ
+

δ�

δN
σλαβ

δ

δJσλαβ

+
δ�

δQσλαβ

δ

δM
σλαβ

+
δ�

δMσλαβ

δ

δQσλαβ

+
δ�

δQσλαβ

δ

δMσλαβ
+

δ�

δM
σλαβ

δ

δQσλαβ

)
.

B2
� = 0, (41)

and in (29),

D� =
∫

d4x

{
c

δ

δc
− i

δ�

δb

δ

δL
− i

δ�

δL

δ

δb

}
= 0. (42)

The first constraint (26), together with (41), establishes a cohomological problem for the
operator B� and its solution is given by [18]:

�count = a0

4

∫
d4x Fμν ∗ Fμν + �(0), �(0) = B��(−1), (43)

10



J. Phys. A: Math. Theor. 43 (2010) 135401 L C Q Vilar et al

where �(0) is a local integrated polynomial in all fields and sources, with ultraviolet dimension
up-bounded by four, ghost number zero and vanishing Q charge. The other Ward identities
(27)–(40) will give constraints to �(0). In the first place, equations (27) and (28) state that b
cannot be used in its construction, and that the source �μ and the antighost c can only appear
in the combination �μ +∂μc. Equations (29) and (30) are also typical of gauge theories and fix
coefficients of counterterms already present at the original action. Now, it is of fundamental
importance to note that, due to equations (31)–(35), the fields χ ,χ ,ψ ,ψ and ξ only appear
directly derivated or inside Moyal commutators (anticommutators). In fact, this is also valid
for all BRST sources in the theory, which obey similar equations.

Now, if we concentrate on contributions that can damage the IR equilibrium established
in (1), we must look for counterterms that may modify the gauge propagation coming from
this action. The first one that comes to mind is∫

d4x(BμνB
μν − ξμνξ

μν), (44)

which, although being allowed by all the remaining Ward identities, is avoided by
equation (35).

Another possible counterterm which deserves special attention is∫
d4x(BμνD

2Bμν − ξμνD
2ξμν), (45)

which is not allowed explicitly by the identity (39).
There is also the element

a

∫
d4x(χμνD

2χμν − ψμνD
2ψμν), (46)

which is in fact allowed by all the symmetries. This counterterm, not originally present in the
localized action (14), changes the propagator to

〈A(k)μAν(−k)〉 =
(

δμν − kμkν

k2

)
k2

k4 + aγ 2k2 + γ 4
. (47)

This form of the propagator still means that the IR ambiguity is eliminated, as one can
see by rewriting the new nonlocal theory in the presence of the term (46).

Now, we should not forget that the original theory, equation (5), that we are studying is
actually a limit of the larger theory described by (14), when the sources reach their physical
values (10). Then, there is still a class of possible counterterms that eventually can change the
propagator (or the nonlocal action) but that appear in the larger theory as four-point divergent
contributions. In particular, we have that the element

α

∫
d4x({J αβσλ

∗, J αβσλ}{Bμν
∗, Bμν} − {Qαβσλ

∗, J αβσλ}{Bμν
∗, ξμν}) (48)

is also allowed by all the symmetries from (26)–(40).
These two terms are then responsible for a gauge propagator modified in relation to that

in (3). When the sources J, J ,Q and Q are set to their physical values, the propagator for the
gauge field takes the general form

〈A(k)μAν(−k)〉 =
(

δμν − kμkν

k2

)
�2

k2(�2 + γ 2�)

� = k4 − αaγ 2k2 + αγ 4

� = ak6 + (1 − αa2)γ 2k4 − αγ 6.

(49)

11
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This means that the inclusion of all counterterms in the starting classical action will in the end
destroy the IR mechanism proposed in (1). Unfortunately, the element (48) seems to be found
in explicit graphic calculations and it is clear that only the case α = 0 would correspond to a
well-behaved propagator.

It is important to mention that the cohomological analysis extended to the noncommutative
space is constrained by the Ward identities of the action. If another Ward identity
is observed, this constraint may reduce the number of counterterms. One example is
the counterterm responsible for the mass a that is apparently not required in one-loop
calculations.

It should be stressed that although the choice of a and α different from 0 at tree level
would give rise to a very different type of propagator, the ultraviolet behavior is exactly 1

k2 .
With an adequate choice for these parameters, it is possible that the propagator satisfies the
Wilson criterion for confinement [30, 31]. The Wilson criterion and the loss of positivity are
interpreted as a sign of confinement [32–35]. This would possibly mean that confining phases
can be expected in noncommutative gauge theories. In such a case, the physical excitations are
not associated with the fundamental fields and only condensates of fields are good candidates
to physical states of the model [35]. Another important point is that in this context the
Wick rotation is not allowed in general. But there is still the possibility that the correlators
between two condensates have a massive particle pole. These correlators admit Wick rotation
and can be associated with observable physical states in Minkowsky space [35]. These
observations may be useful for a future understanding of the nature of noncommutative gauge
theories.

5. Conclusion

We saw during this work how a nonlocal mechanism as that in equation (1), that can classically
cure the infrared problem of the two-point function of a noncommutative Maxwell theory, is
not ultraviolet stable.

In the development of this algebraic proof, we followed the approach used by [32], and
more recently improved by Sorella and Baulieu [28], to the study of the BRST quantization
of the nonlocal action coming from Gribov’s observations on the infrared properties of gauge
theories. We understand that, if in the usual commutative space the use of nonlocal actions is an
alternative option to the study of the infrared regime, on the other hand, in the noncommutative
case this seems to be the inevitable path to solve the intrinsic problem of the IR/UV
mix.

As a final comment, we would like to point out a recent proposal simplifying (1) in order
to avoid the quantum generation of counterterms as (48), but still preserving the IR match for
the two-point function [36].
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